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Abstract. This paper deals with coupled wave system with viscoelastic terms and new logarithmic nonlinearities.

We use the theory of semigroup to establish a theorem of local existence. Under some specific conditions, we

prove that the solution is global in time. After that, we give the exponential stability result of the global solution.

The introduced logarithmic nonlinearities are partial derivatives of a primitive function F(u,v), this function is

not necessarily a positive function, which creates obstacles and problems to get the existence and the stability

result. Our goal in this work is to overcome this challenge and give new solutions to analyze this type of nonlinear

systems. Our new result provides a step forward in how to deal with coupled wave systems.

Keywords: Exponential stability, global existence, logarithmic nonlinearity, viscoelastic, wave equation.

AMS Subject Classification: 35L70, 35B40, 74D10, 93D20.
∗Corresponding author: Ahmed Benzian, Laboratory of Pure and Applied Mathematics, University of Laghouat,

P.O. BOX 37G, Laghouat (03000), Algeria, e-mail: a.benzian@lagh-univ.dz

Received: 9 May 2023; Revised: 15 June 2023; Accepted: 4 July 2023; Published: 3 August 2023.

1 Introduction

Let Ω be a bounded domain of R2, with a smooth boundary ∂Ω. In this paper, we consider the
coupled system of viscous wave equations with variable coefficients:

utt + Lu−
∫ ∞

0
g (s)Lu (t− s) ds = κv2pu2p−1 ln (|uv|) , in Ω× (0,∞),

vtt + Lv −
∫ ∞

0
g (s)Lv (t− s) ds = κv2p−1u2p ln (|uv|) , in Ω× (0,∞),

u = v = 0, on Γ× (0,∞) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , in Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , in Ω,

(1)

with Lu = −div (A∇u) = −
2∑

i,j=1

∂
∂xi

(
aij(x) ∂u∂xj

)
, p ≥ 2 and κ ∈ (0, %0) where %0 > 0. u0, u1, v0

and v1 are given initial data.The function g denotes the kernels of memory terms. The loga-
rithmic nonlinearity appears naturally in inflation cosmology and supersymmetric field theories,
quantum mechanics, and many other branches of physics such as nuclear physics, optics, and
geophysics, for more applications see Bartkowski & Gorka (2008); Bia lynicki-Birula & Mycielski
(1975); Górka (2009); Barrow & Parsons (1995); Enqvist & McDonald (1998). These specific
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applications in physics and other fields attracted a lot of mathematical researchers to work with
such problems. Cazenave & Haraux (1980) established the existence and uniqueness of a solution
to the Cauchy problem for the equation

utt −∆u = u log|u|k, (2)

in R3 and k a positive constant. Using compactness method, Górka (2009) established the global
existence of weak solutions for all (u0, u1) ∈ H1

0 × L2 to the initial boundary value problem of
equation (2) in the one-dimensional case. Bartkowski & Gorka (2008), obtained the existence
of classical solutions and investigated weak solutions for the corresponding Cauchy problem of
equation (2) in the one-dimensional case. Han (2013), studied the global existence of weak
solutions for the initial boundary value problem

utt −∆u+ u− u log|u|2 + ut + u|u|2 = 0, in Ω× (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3)

where Ω is a smooth and bounded domain in R3. Hiramatsu et al. (2010) gave a numerical study
of the model (3). However, there is no theoretical analysis for the problem as in Han (2013). In
addition, Peyravi (2020) improved and extended some previous studies such as the one by Hu et
al. (2019). He studied the decay estimate and exponential growth of solutions for the problem

utt −∆u+ u+

∫ t

0
g(t− s)∆u(s)ds+ h(ut)ut + |u|2u = u ln|u|k, in Ω× (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω,

(4)

where Ω is a bounded domain in R3 with a smooth boundary ∂Ω, h(s) = k0 + k1|s|m−1 where
k, k0, k1 and m are positive constants, g represents the memory kernel and satisfying

g(0) > 0,

∫ +∞

0
g(s)ds < +∞, 1−

∫ +∞

0
g(s)ds = l0 > 0. (5)

Al-Gharabli et al. (2019) considered the following plate equation:
utt + ∆2u+ u−

∫ t

0
g(t− s)∆2u(s)ds = ku ln|u|, in Ω× (0,∞),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(6)

where Ω is a bounded domain of R2 with a smooth boundary ∂Ω and k is a small positive real
number. They proved the existence and decay results of the solutions, imposing the condition
on the relaxation function:

g′(t) ≤ −ξ(t)gp(t), 1 ≤ p < 3/2. (7)

Regarding the system of wave equations without logarithmic source term the initial boundary
value problem:

utt −∆u+

∫ t

0
g1(t− s)∆u(s)ds+ h(ut) = f1(u, v), in Ω× (0,∞),

vtt −∆v +

∫ t

0
g2(t− s)∆v(s)ds+ h(vt) = f2(u, v), in Ω× (0,∞)

u = v = 0, on ∂Ω× [0,∞),
u(·, 0) = u0, ut(·, 0) = u1, v(·, 0) = v0, vt(·, 0) = v1, in Ω,

(8)
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has been considered, where Ω is a bounded domain in Rn with a smooth boundary ∂Ω. The
systems of wave equation have been extensively studied and several results have been obtained.
See, in this regard, previous studies, e.g. Said-Houari et al. (2011); Han & Wang (2009); Mustafa
(2012); Messaoudi & Al-Gharabli (2015). Concerning the viscoelastic systems with logarithmic
non-linearities, there are numerous results related to the asymptotic behavior of solutions. For
example, Wang et al. (2019) studied the problem

utt −M
(
‖∇u‖2 + ‖∇v‖2

)
∆u+ ut = |u|k−2u ln|u|, in Ω× (0,∞),

vtt −M
(
‖∇u‖2 + ‖∇v‖2

)
∆v + vt = |v|k−2v ln|v|, in Ω× (0,∞),

u(., 0) = u0, ut(., 0) = u1, in Ω,

v(., 0) = v0, vt(., 0) = v1, in Ω,

u = v = 0, in ∂Ω× (0,∞),

(9)

where Ω is a bounded domain with smooth boundary ∂Ω in Rn. The term M(s) := α+βsγ is a
Kirchhoff term, where α ≥ 1, β ≥ 0, γ > 0 and k ≥ 2γ + 2. By employing potential well method
and concavity method, they obtained several results related to the sufficient conditions posed
on subcritical initial energy and critical initial energy, which is used to classify initial data for
global existence and finite time blow up. Boulaaras (2021) studied the coupled Lamé system

utt + αv −∆eu+

∫ t

0
g1(t− s)∆u(s)ds− µ1∆ut(t) = b1u ln|u(t)|, in Ω× (0,+∞),

vtt + αu−∆ev +

∫ t

0
g2(t− s)∆v(s)ds− µ2∆vt(t) = b2v ln|v(t)|, in Ω× (0,+∞),

u(., 0) = u0, ut(., 0) = u1, in Ω,

v(., 0) = v0, vt(., 0) = v1, in Ω,

u = v = 0, in ∂Ω× (0,∞),

(10)

where Ω be a bounded domain in R3 with smooth boundary ∂Ω, µ1, µ2, α, b1, b2 are positive
constants and (u0, u1, v0, v1) are given as history and initial data. Here ∆e refers to the elasticity
operator, which is defined as

∆eu = µ∆u+ (λ+ µ)∇(div u), u = (u1, u2, u3)T .

He obtained exponential decay of solutions, imposing the condition on the relaxation function,

g′i(t) ≤ −ξ(t)gi(t), for all t ≥ 0 for i = 1, 2

where ξ : R+ → R+ is a non-increasing differentiable function. Very recently, Irkıl et al. (2022)
investigated the problem

utt −M
(
‖∇u‖2 + ‖∇v‖2

)
∆u+

∫ t

0
g1(t− s)∆u(s)ds−∆ut = |v|p−2u ln|u|, in Ω× (0,∞),

vtt −M
(
‖∇u‖2 + ‖∇v‖2

)
∆v +

∫ t

0
g2(t− s)∆v(s)ds−∆vt = |v|p−2v ln|v|, in Ω× (0,∞),

u(., 0) = u0, ut(., 0) = u1, in Ω,

v(., 0) = v0, vt(., 0) = v1, in Ω,

u = v = 0, in ∂Ω× (0,∞),

(11)

where p ≥ 2γ + 2 is a real number. Ω ⊂ Rn ( n ≥ 1 ) is a regular and bounded domain
with smooth boundary ∂Ω. Here, M is a positive C1 function for s ≥ 0 satisfying M(s) =
β1 + β2s

γ , γ > 0, β1 ≥ 1, β2 ≥ 0. The kernels gi : R+ → R+(i = 1, 2) satisfying

g′i(t) ≤ −%gi(t), t ≥ 0, (12)

for some positive constant %. The authors proved the global existence and they established decay
rate estimates by using multiplier method.
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Challenge

It is well known that f1 and f2 in (8) have a relation (see for example Said-Houari et al. (2011);
Han & Wang (2009); Mustafa (2012); Messaoudi & Al-Gharabli (2015)), which is the existence
of a positive function F (u, v) satisfying

f1(u, v) =
∂F

∂u
(u, v),

f2(u, v) =
∂F

∂v
(u, v),

F(u,v) ≥ 0.

(13)

But in our system f1(u, v) = ∂F
∂u (u, v) and f2(u, v) = ∂F

∂v (u, v) where F : R2 −→ R is given by

F (u, v) =
κ

4p2

(
v2pu2p ln

(
|uv|2p

)
− v2pu2p

)
,

is not necessarily a positive function. In this paper, we are concerned with coupled system
(1) with variable coefficients and new logarithmic non-linearity terms. We introduce these
non-linear terms to generalize the previous publications and to highlight how to deal with the
primitive function F (u, v). We prove that the solution is global in time when κ belongs to a
specific interval from the set of real positive numbers.

In the following section, we will go through several notations and assumptions that we will
require for our work. The third section is devoted to prove the existence of the local and global
solution. In the forth section we show several technical lemmas that are required for our main
result. We state and prove our stability result in the last section.

2 Preliminary

In this section, we present some material that we shall use in order to present our results. Denote
V = H1

0 (Ω) and (u, v) =
∫

Ω u(x, t)v(x, t)dx the scalar product in L2(Ω). Also we mean by ‖.‖q
the Lq(Ω) norm for 1 ≤ q ≤ ∞. The Poincaré inequality holds on V , i.e. there exits a constant
C∗ such that

∀u ∈ V, ‖u(t)‖q ≤ C∗‖∇u(t)‖2. (14)

For studying the problem (1), we will need the assumptions:
(A1) g : [0, ∞)→ (0, ∞) is C2 nonincreasing differentiable function satisfying

g(0) > 0, 1−
∫ ∞

0
g(s)ds = ` > 0.

(A2) There exists a positive nonincreasing differentiable function ξ(t) such that

g′(t) ≤ −ξ(t)g(t), ∀t ≥ 0, (15)

where ξ satisfies ∫ +∞

0
ξ(t)dt = +∞. (16)

(A3) The matrix A(x) = (aij(x)) , with aij ∈ C1
(
Ω
)
, is symmetric and there exists a constant

a0 > 0 such that for all x ∈ Ω and ζ = (ζ1, ζ2) ∈ R2, we have

2∑
i,j=1

aij(x)ζjζi ≥ a0|ζ|2. (17)
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Following the same arguments of Dafermos (1970), we introduce new variables to establish
the usual history setting of problem (1):

ϑt(x, s) = u(x, t)− u(x, t− s), s, t ∈ R+ (18)

and
ϕt(x, s) = v(x, t)− v(x, t− s), s, t ∈ R+. (19)

Therefore, problem (1) takes the form
utt + `Lu+

∫ +∞

0
g (s)Lϑt (s) ds = κv2pu2p−1 ln (|uv|) , in Ω× (0,∞),

vtt + `Lv +

∫ +∞

0
g (s)Lϕt (s) ds = κv2p−1u2p ln (|uv|) , in Ω× (0,∞),

(20)

and 

ϑtt(x, t) + ϑts(x, s) = ut(x, t), x ∈ Ω, s, t ∈ (0,∞),
ϕtt(x, t) + ϕts(x, s) = vt(x, t), x ∈ Ω, s, t ∈ (0,∞),
u(x, t) = v(x, t) = ϑt(x, s) = ϕt(x, s) = 0, x ∈ Γ, s, t ∈ (0,∞),
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,
ϑ0(x, s) = ϑ0(x, s) = u(x, 0)− u(x,−s), x ∈ Ω, s ∈ (0,∞),
ϕ0(x, s) = ϕ0(x, s) = w(x, 0)− w(x,−s) x ∈ Ω, s ∈ (0,∞).

(21)

Lemma 1. There exists τ > 0 such that

y|ln y| ≤ y2 + τ
√
y, ∀y > 0. (22)

We follow the same technique as Al-Gharabli et al. (2020) to prove this lemma.

Proof. Let r(y) =
√
y(|ln y| − y). Notice that r is continuous on (0,∞) and its limit at 0+is 0+,

and its limit at +∞ is −∞. Then r has a maximum τ on (0,∞), so (22) holds.

Lemma 2. There exists a positive constant A > 0, such that the real function z defined by

z(y) =

{
y2 ln|y|, y 6= 0,

0, y = 0,

satisfies
|z(y)| ≤ |y|3 +A, for all y ∈ R. (23)

Proof. As in Kafini & Messaoudi (2020), we have lim
|y|→+∞

(
ln|y|
|y|

)
= 0, then there exists C > 0

such that
ln|y|
|y|

< 1, ∀ |y| > C

Then,
|z(y)| ≤ |y|3, ∀ |y| > C.

Since lim
|y|→0

z(y) = 0, then |z(y)| ≤ A, for some A > 0 and for all |y| ≤ C. Thus,

|z(y)| ≤ |y|3 +A.

Lemma 3. The following inequality holds for any y > 0,

y2 ln y ≤ y3. (24)

Proof. We have
ln(y)

y
≤ 1, then by multiplication this inequality by y3, we get (24).
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3 Well-Posedness

Throughout this paper, c is used to denote a positive generic constant. Let us introduce the
notations (

g � ∇ϑt
)

(t) =

∫ ∞
0

g(s)a
(
ϑt(s), ϑt(s)

)
ds,

where

a(w(t), z(t)) =

2∑
i,j=1

∫
Ω
aij(x)

∂w(t)

∂xj

∂z(t)

∂xi
dx =

∫
Ω
A∇w(t)∇z(t)dx (25)

Remark 1. By using (A3), we verify that the bilinear form a(., .) : H1
0 (Ω) × H1

0 (Ω) → R is

symmetric and continuous. In addition, from (17), we have a(u(t), u(t)) ≥ a0

∫
Ω

∑
i=1

| ∂u
∂xi
|2dx =

a0‖∇u(t)‖22, which implies that a(., .) is coercive.

Now, we introduce the energy associated to problem (20)

E(t) =
1

2
‖ut(t)‖22 +

1

2
‖vt(t)‖22 +

`

2
a(u(t), u(t)) +

`

2
a(v(t), v(t))

+
1

2

(
g � ∇ϑt

)
(t) +

1

2

(
g � ∇ϕt

)
(t)− κ

∫
Ω
F (u, v)dx, ∀t ≥ 0,

(26)

where F (u, v) =
1

4p2

(
v2pu2p ln

(
|uv|2p

)
− v2pu2p

)
.

Lemma 4. Let (u, v) be the solution of (20). Then, the energy functional defined by (26) is
nonincreasing and we have for all t ≥ 0,

d

dt
E(t) =

1

2

(
g′ � ∇ϕt

)
(t) +

1

2

(
g′ � ∇ϑt

)
(t). (27)

Proof. Multiplying the first equation in (20) by ut and the second by vt, integrating over Ω,
using Green’s formula and exploiting the forth and the fifth equations in system (20), we get

d

dt
E(t) =

1

2

d

dt

(
g � ∇ϑt

)
(t)−

∫
Ω

∫ ∞
0

g(s)A∇ϑt(s)∇ut(t)dsdx

+
1

2

d

dt

(
g � ∇ϕt

)
(t)−

∫
Ω

∫ ∞
0

g(s)A∇ϕt(s)∇vt(t)dsdx.
(28)

Using the fact that ϑtt(s) + ϑts(s) = ut(t), the fourth term in the right-hand side of (27) can be
written as

−
∫

Ω

∫ ∞
0

g(s)A∇ϑt(s)∇ut(t)dsdx =

−
∫

Ω

∫ ∞
0

g(s)A∇ϑt(s)∇ϑts(s)dsdx−
∫

Ω

∫ ∞
0

g(s)A∇ϑt(s)∇ϑtt(s)dsdx

=
1

2

∫
Ω

∫ ∞
0

g′(s)A∇ϑt(s)∇ϑt(s)dsdx− 1

2

d

dt

(
g � ∇ϑt

)
(t).

(29)

In the same way, we get

−
∫

Ω

∫ ∞
0

g(s)A∇ϕt(s)∇vt(t)dsdx =

1

2

∫
Ω

∫ ∞
0

g′(s)A∇ϕt(s)∇ϕt(s)dsdx− 1

2

d

dt

(
g2 � ∇ϕt

)
(t).

(30)

Using (28), (29) and (30), we obtain desired result.
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Now, we start to give the Well-Posedness of our problem. L2
g(R+;V ) denotes the Hilbert

space of V -valued functions on R+ endowed with the inner product

〈χ, ψ〉L2
g(R+;V ) =

∫
Ω

(∫ ∞
0

g(s)A(x)∇χ(s)∇ψ(s)ds

)
dx. (31)

Denote by H the Hilbert space

H = V 2 ×
(
L2(Ω)

)2 × (L2
g (R+;V )

)2
equipped with the inner product〈

(u,w, ψ, χ, ϑ, θ)T , (û, ŵ, ψ̂, χ̂, ϑ̂, θ̂)T
〉
H

= `

∫
Ω
A(x)∇u∇ûdx+ `

∫
Ω
A(x)∇w∇ŵdx+

∫
Ω
ψψ̂dx+

∫
Ω
χχ̂dx

+

∫
Ω

∫ ∞
0

g(s)A(x)∇ϑ∇ϑ̂dsdx+

∫
Ω

∫ ∞
0

g(s)A(x)∇θ∇θ̂dsdx.

Let us denote U =
(
u, v, ut, vt, ϑ

t, ϕt
)T
. The problem (20) can be rewritten as

U ′ = A U + J (U), t > 0

U(0) = (u0, v0, u1, w1, ϑ0, ϕ0)T ,
(32)

where the operator A is defined by

A



u
v
ψ
χ
ϑ
θ

 =



ψ
χ

−`Lu−
∫ +∞

0
g (s)Lϑ (s) ds

−`Lv −
∫ +∞

0
g (s)Lθ (s) ds

−ϑs + ψ
−θs + χ


(33)

and J (U) = (0, 0, κv2pu2p−1 ln (|uv|) , κv2p−1u2p ln (|uv|) , 0, 0) = (0, 0, f1(u, v), f2(u, v), 0, 0), with
domains

D(A ) =


(u,w, ψ, χ, ϑ, θ)T ∈ H : (u, v) ∈

(
H2(Ω) ∩ V

)2
, (ψ, χ) ∈ V,

(ϑ, θ) ∈
(
L2
g

(
R+;H2(Ω) ∩ V

))2
, (ϑs, θs) ∈

(
L2
g (R+;V )

)2
,

ϑ(0) = θ(0) = 0,


and D(J ) = H. First, we prove that the operator J : H→ H is locally Lipschitz. We see that∥∥∥J (U)− J (Ũ)

∥∥∥2

H
= ‖f1(u, v)− f1(ũ, ṽ)‖22 + ‖f2(u, v)− f2(ũ, ṽ)‖22 .

Let us define the C1(R) function by

h(s) =

{
s2p−1 ln(|s|), s 6= 0,

0, s = 0
and h′(s) =


(2p− 1) s2p−2 ln (|s|)
+s2p−2, s 6= 0,

0, s = 0.

(34)

Hence,
|f1(u, v)− f1(ū, v̄)| =κ|v2pu2p−1 ln (|uv|)− v̄2pū2p−1 ln (|ūv̄|)|

=κ|vh(uv)− vh(ūv̄) + vh(ūv̄)− v̄h(ūv̄)|
≤κ|v||h(uv)− h(ūv̄)|+ κ|h(ūv̄)||v − v̄|

(35)
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and

|f2(u, v)− f2(ū, v̄)| =κ|u2pv2p−1 ln (|uv|)− ū2pv̄2p−1 ln (|ūv̄|)|
=κ|uh(uv)− uh(ūv̄) + uh(ūv̄)− ūh(ūv̄)|
≤κ|u||h(uv)− h(ūv̄)|+ κ|h(ūv̄)||u− ū|.

(36)

As a consequence of the mean value theorem, we have, for 0 ≤ λ ≤ 1,

I3 = |h(uv)− h(ūv̄)|
= |h′ (λuv + (1− λ)ūv̄)||uv − ūv̄|

= |(2p− 1)

p− 1
(λuv + (1− λ)ūv̄)2(p−1) ln

(
|λuv + (1− λ)ūv̄|p−1

)
+

(λuv + (1− λ)ūv̄)2p−2| × |uv − vū+ vū− ūv̄|.

(37)

Using lemma 2, Young’s inequality and exploiting (x + y)r ≤ 2r−1(xr + yr), x, y > 0, r > 1, we
get

I3 ≤
[

(2p− 1)

p− 1

(
|λuv + (1− λ)ūv̄|3(p−1) +A

)
+ (2)−1(2λ)2p−2|uv|2p−2

+(2)−1(2(1− λ))2p−2|ūv̄|2p−2
]
× [|v||u− ū|+ |ū||v − v̄|]

≤c
[
c+ |uv|3(p−1) + |ūv̄|3(p−1) + |uv|2p−2 + |ūv̄|2p−2

]
×

[|v||u− ū|+ |ū||v − v̄|]

≤c
[
c+ |v|2 + |u|6(p−1) + |v|6(p−1) + |ū|6(p−1)

+|v̄|6(p−1) + |u|4(p−1) + |v|4(p−1) + |ū|4(p−1) + |v̄|4(p−1)
]
|u− ū|

+ c
[
c+ |ū|2 + |u|6(p−1) + |v|6(p−1) + |ū|6(p−1) + |v̄|6(p−1)

+|u|4(p−1) + |v|4(p−1) + |ū|4(p−1) + |v̄|4(p−1)
]
|v − v̄|.

(38)

Now, we use lemma 2 to estimate |h(ūv̄)| as

|h(ūv̄)| = 1

p− 1
|(ūv̄)(ūv̄)2(p−1) ln(|ūv̄|p−1)|

≤|ūv̄|3p−1 +A|ūv̄|

≤c
[
|ū|6(p−1) + |v̄|6(p−1) + |ū|2 + |v̄|2

]
.

(39)

Finally, we combine (35)-(39) and using Hölder’s inequality with Sobolev embedding, we arrive
at

‖f1(u, v)− f1(ū, v̄)‖22 + ‖f2(u, v)− f2(ū, v̄)‖22
≤ C (‖u‖V , ‖v‖V , ‖ū‖V , ‖v̄‖V )

[
‖u− ū‖2V + ‖v − v̄‖2V

]
.

(40)

Therefore, J is locally Lipschitz.
By using the semi-group approach and combining the ideas from Guesmia (2011), we can prove
that the operator A generates a monotone maximal operator on H and therefore the next
existence result holds (see Pazy (1983),Komornik (1994)).

Theorem 1. Assume that (A1)-(A3) hold. Then for any U0 ∈ H, there exists a unique solution
U ∈ C([0, T ];H) of problem (32).
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3.1 Global existence

First, we introduce the functionals:

J(t) =
`

2
× a(u(t), u(t)) +

`

2
× a(v(t), v(t)) +

1

2

(
g � ∇ϑt

)
(t) +

1

2

(
g � ∇ϕt

)
(t)

− κ×
∫

Ω
F (u, v)dx.

(41)

and

I(t) = `× a(u(t), u(t)) + `× a(v(t), v(t)) +
(
g � ∇ϑt

)
(t) +

(
g � ∇ϕt

)
(t)

− 6κ×
∫

Ω
F (u, v)dx.

(42)

In the following sections of the paper, we will assume that

%0 < min

{
2p2`3pa3p

0

3C6p
∗

,
pa3p

0 `
3p

4C6p
∗

}
=
pa3p

0 `
3p

4C6p
∗

. (43)

Lemma 5. Suppose that (A3) and (43) hold. Then, the inequality

6κ

∫
Ω
F (u, v)dx 6 (`a(u, u) + `a(v, v))3p (44)

holds for any (u, v) ∈ V × V .

Proof. By using Young’s, Poincare’s inequalities, (43), lemma 3 and remark 1, we obtain

κ

∫
Ω
F (u, v)dx ≤ κ

∫
Ω

1

2p2
v2pu2p ln (|uv|p) dx ≤ κ

∫
Ω

1

2p2
|uv|3pdx

≤ κ
∫

Ω

1

4p2
|u|6pdx+ κ

∫
Ω

1

4p2
|v|6pdx

≤ C6p
∗

4p2
κ ‖∇u‖6p2 +

C6p
∗

4p2
κ ‖∇v‖6p2

≤ κ C6p
∗

4p2a3p
0

(a(u(t), u(t)))3p + κ
C6p
∗

4p2a3p
0

(a(v(t), v(t)))3p

≤ `3p

6
(a(u(t), u(t)))3p +

`3p

6
(a(v(t), v(t)))3p .

(45)

This finishes the proof.

Lemma 6. Suppose that (A1)− (A3) hold. Then for any U0 ∈ H satisfying{
β = [3E(0)]3p−1 < 1
I(0) = I (u0, v0) > 0

(46)

we have
I(t) = I(u(t), v(t)) > 0, ∀t > 0 (47)

Proof. Since I(0) > 0, then by continuity,

I(t) ≥ 0, on (0, δ), δ > 0 (48)

Let Tm be such that

{I (Tm) = 0 and I(t) > 0, ∀0 ≤ t < Tm} (49)
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which implies that, for all t ∈ [0, Tm],

J(t) =
1

6
I(t) +

1

3

[
`a(u(t), u(t)) + `a(v(t), v(t)) +

(
g � ∇ϑt

)
(t)

+
(
g � ∇ϕt

)
(t)
]

≥1

3

[
`a(u(t), u(t)) + `a(v(t), v(t)) +

(
g � ∇ϑt

)
(t) +

(
g � ∇ϕt

)
(t)
]
,

(50)

we easily get

`a(u(t), u(t)) + `a(v(t), v(t)) ≤ 3J(t)

≤ 3E(t) ≤ 3E(0), ∀t ∈ [0, Tm] .
(51)

By exploiting (44), (46) and (51), we obtain

6κ

∫
Ω
F (u (Tm) , v (Tm)) dx ≤ (`a(u, u) + `a(v, v))3p

= (`a(u (Tm) , u (Tm)) + `a(v (Tm) , v (Tm)))3p−1

× (`a(u (Tm) , u (Tm)) + `a(v (Tm) , v (Tm)))

≤ [3E(0)]3p−1 × (`a(u (Tm) , u (Tm)) + `a(v (Tm) , v (Tm)))

=β (`a(u (Tm) , u (Tm)) + `a(v (Tm) , v (Tm)))

< (`a(u (Tm) , u (Tm)) + `a(v (Tm) , v (Tm))) .

(52)

Hence, by using (42), we conclude that

I(Tm) > 0. (53)

which contradicts our hypothesis (49). So I(t) > 0 for all t ≥ 0,

Theorem 2. Suppose that (A1) − (A3), and (43) hold. If U0 ∈ H satisfying (46), then the
solution is global in time.

Proof. We use (51) to get

E(0) ≥ E(t) = J(t) +
1

2

(
‖ut‖22 + ‖vt‖22

)
≥ 1

3

(
`a(u(t), u(t)) + `a(v(t), v(t)) +

(
g � ∇ϑt

)
(t) +

(
g � ∇ϕt

)
(t)
)

+
1

2

(
‖ut‖22 + ‖vt‖22

)
.

(54)

Therefore,

‖U‖H ≤ c̄. (55)

That proves the solution is global in time.

Remark 2. The equation (54) ensures that

a(u(t), u(t)) + a(v(t), v(t)) ≤ 3

`
E(t). (56)

262



A. BENZIAN: EXPONENTIAL STABILITY OF LOGARITHMIC WAVE SYSTEM EQUATIONS...

4 Technical lemmas

Before we state our stability theorem and its proof, we establish several lemmas needed to prove
our result.

Lemma 7. Let (A1)-(A3) hold and (u, v) be the solution of (20). We define

K1(t) :=

∫
Ω
uutdx+

∫
Ω
vvtdx, (57)

which satisfies, for all t ≥ 0,

K ′1(t) ≤ ‖ut(t)‖22 + ‖vt(t)‖22 +
2a1

a2
0

(
g � ∇ϑt

)
(t) +

2a1

a2
0

(
g � ∇ϕt

)
(t)

− `

2
a(u(t), u(t))− `

2
a(v(t), v(t))

(58)

where a1 = max
1≤j≤2

2∑
i=1

‖aij‖2∞ .

Proof. Taking derivative of K1(t) and using (20), we get

K ′1(t) = ‖ut(t)‖22 + ‖vt(t)‖22 − `a(u(t), u(t))− `a(v(t), v(t))

−
∫

Ω

∫ ∞
0

g(s)A∇ϑt(s)∇u(t)dsdx−
∫

Ω

∫ ∞
0

g(s)A∇ϕt(s)∇v(t)dsdx

+ 2κ

∫
Ω
v2pu2p ln (|uv|) dx

(59)

Using Young’s inequality, (A1) and (A3) the fifth term can be estimated as∫ ∞
0

g(s)

∫
Ω
A∇ϑt(s)∇u(t)dx ds =

2∑
i,j=1

∫ ∞
0

g(s)

∫
Ω
aij(x)

∂ϑt(s)

∂xj

∂u(t)

∂xi
dx ds

≤ λ
2∑

i,j=1

∫
Ω

(
aij(x)

∂u(t)

∂xj

)2

dx+
1

4λ

2∑
i,j=1

∫
Ω

(∫ ∞
0

g(s)
∂ϑt(s)

∂xi
ds

)2

dx

≤ λ

a0

(
max

1≤j≤n

2∑
i=1

‖aij‖2∞

)
a(u(t), u(t)) +

2l

4a0λ

(
g � ∇ϑt

)
(t)

≤ λa1

a0
a(u(t), u(t)) +

`

2a0λ

(
g � ∇ϑt

)
(t),

(60)

for any λ > 0. In the same manner, we get∫
Ω

∫ ∞
0

g(s)A∇ϕt(s)∇v(t)dsdx ≤ λa1

a0
a(v(t), v(t)) +

`

2a0λ

(
g � ∇ϕt

)
(t). (61)

We can use (45), to estimate the last term as

2
κ

p

∫
Ω
v2pu2p ln (|uv|p) dx

≤ κ C
6p
∗

pa3p
0

(a(u(t), u(t)))3p + κ
C6p
∗

pa3p
0

(a(v(t), v(t)))3p

≤ κ(3E(0))3p−1C6p
∗

pa3p
0 `

3p−1
a(u(t), u(t)) + κ

(3E(0))3p−1C6p
∗

pa3p
0 `

3p−1
a(v(t), v(t))

≤ κ C6p
∗

pa3p
0 `

3p−1
a(u(t), u(t)) + κ

C6p
∗

pa3p
0 `

3p−1
a(v(t), v(t))

≤ `

4
a(u(t), u(t)) +

`

4
a(v(t), v(t)).

(62)
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Taking λ = a0`
4a1

and combining (59)-(62), we obtain (58).

Lemma 8. Under the assumptions (A1)-(A3), the functional K2 defined by

K2(t) = R1(t) +R2(t) (63)

where

R1(t) = −
∫

Ω
ut(t)

∫ ∞
0

g(s)ϑt(s)ds dx (64)

and

R2(t) = −
∫

Ω
vt(t)

∫ ∞
0

g(s)ϕt(s)ds dx (65)

satisfies, for all t ≥ 0

K ′2(t) ≤ [δ − (1− `)] ‖ut(t)‖22 + [δ − (1− `)] ‖vt(t)‖22 −
g(0)C2

∗
4δa0

(
g′ � ∇ϑt

)
(t)

+ δca(u(t), u(t)) + δca(v(t), v(t))− g(0)C2
∗

4δa0

(
g′ � ∇ϕt

)
(t)

+

[
2`(1− `)

4δa0
+

1− `
2a0

(a1 + 2) +
(1− `)C2

∗
4δa0

]
×[(

g � ∇ϑt
)

(t) +
(
g � ∇ϕt

)
(t)
]
,

(66)

in which δ is some positive constant.

Proof. Using (20), we obtain

R′1(t) =−
∫

Ω
utt(t)

∫ ∞
0

g(s)ϑt(s)ds dx−
∫

Ω
ut(t)

∫ ∞
0

g′(s)ϑt(s)ds dx

− (1− `)
∫

Ω
u2
t (t)dx

=`
2∑

i,j=1

∫ ∞
0

g(s)

∫
Ω
aij(x)

∂u(t)

∂xj

∂ϑt(s)

∂xi
dxds

+
2∑

i,j=1

∫
Ω

(∫ ∞
0

g(s)aij(x)
∂ϑt(s)

∂xj
ds

)(∫ ∞
0

g(s)
∂ϑt(s)

∂xi
ds

)
dx

+

∫
Ω

(∫ ∞
0

g(s)ϑt(s)ds

)
κv2pu2p−1 ln (|uv|) dx

−
∫

Ω
ut(t)

∫ ∞
0

g′(s)ϑt(s)ds dx− (1− `)
∫

Ω
u2
t (t)dx.

(67)

By exploiting Young’s inequality, we get that, for any δ > 0,∣∣∣∣∣−`
2∑

i,j=1

∫ ∞
0

g(s)

∫
Ω
aij(x)

∂u(t)

∂xj

∂ϑt(s)

∂xi
ds dx

∣∣∣∣∣
≤ δa1`

a0
a(u(t), u(t)) +

2`(1− `)
4δa0

(
g � ∇ϑt

)
(t).

(68)
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The second term in the right-hand side of (67) can be estimated by∣∣∣∣∣−
2∑

i,j=1

∫
Ω

(∫ ∞
0

g(s)aij(x)
∂ϑt(s)

∂xj
ds

)(∫ ∞
0

g(s)
∂ϑt(s)

∂xi
ds

)
dx

∣∣∣∣∣
≤ 1

2

2∑
i,j=1

∫
Ω

∣∣∣∫ ∞
0

g(s)aij(x)
∂ϑt(s)

∂xj
ds
∣∣∣2 dx

+
1

2

2∑
i,j=1

∫
Ω

∣∣∣ ∫ ∞
0

g(s)
∂ϑt(s)

∂xi
ds
∣∣∣2 dx

≤ 1− `
2a0

[a1 + 2]
(
g � ∇ϑt

)
(t).

(69)

Using Young’s inequality, we get

|−
∫

Ω
ut(t)

∫ ∞
0

g′(s)ϑt(s)ds dx| ≤ δ ‖ut(t)‖22 −
g(0)C2

∗
4δa0

(
g′ � ∇ϑt

)
(t). (70)

Applying (22) for y = |uv|2p−1,we get, for any δ > 0 ,∣∣∣∣∫
Ω

(∫ ∞
0

g(s)ϑt(s)ds

)
κv2pu2p−1 ln (|uv|) dx

∣∣∣∣
≤ 1

2p− 1

∫
Ω

∣∣∣∣(∫ ∞
0

g(s)ϑt(s)ds

) ∣∣∣∣|v||vu|2p−1
∣∣∣ ln (|uv|2p−1

) ∣∣∣dx
≤
∫

Ω

∣∣∣∣(∫ ∞
0

g(s)ϑt(s)ds

) ∣∣∣∣|v|(|uv|4p−2 + τ
√
|uv|2p−1

)
dx

≤ δ
∫

Ω
|v|2

(
|uv|4p−2+τ

√
|uv|2p−1

)2
dx+

(1− `)C2
∗

4δa0

(
g � ∇ϑt

)
(t)

≤ 2δ

∫
Ω
|v|2

(
|uv|8p−4 + τ2|uv|2p−1

)
dx+

(1− `)C2
∗

4δa0

(
g � ∇ϑt

)
(t)

≤ cδa(u(t), u(t)) + cδa(v(t), v(t)) +
(1− `)C2

∗
4δa0

(
g � ∇ϑt

)
(t).

(71)

Combining all above inequalities, we get

R′1(t) ≤ [δ − (1− `)] ‖ut(t)‖22 −
g(0)C2

∗
4δa0

(
g′ � ∇ϑt

)
(t) + δca(u(t), u(t))

+ δca(v(t), v(t)) +

[
2`(1− `)

4δa0
+

1− `
2a0

(a1 + 2) +
(1− `)C2

∗
4δa0

]
×(

g � ∇ϑt
)

(t).

(72)

In the same manner, we obtain

R′2(t) ≤ [δ − (1− `)] ‖vt(t)‖22 −
g(0)C2

∗
4δa0

(
g′ � ∇ϕt

)
(t) + δca(v(t), v(t))

+ δca(u(t), u(t)) +

[
2`(1− `)

4δa0
+

1− `
2a0

(a1 + 2) +
(1− `)C2

∗
4δa0

]
×(

g � ∇ϕt
)

(t).

(73)

Together with (72) and (73), the proof of Lemma 8 is now completed.
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Now, let us construct a Lyapunov functional L as

L(t) = ME(t) +N1K1(t) +N2K2(t) (74)

where M, N1 and N2 are positive constants which will be choose later.

Lemma 9. For M > 0 large enough, there exist two positive constants σ1 and σ2 such that

σ1E(t) ≤ L(t) ≤ σ2E(t). (75)

Proof. By Cauchy-Schwarz’s, Young’s and Poincaré’s inequalities, we have

|K1(t)| ≤
∣∣∣∫

Ω
ut(t)u(t)dx

∣∣∣+∣∣∣∫
Ω
vt(t)v(t)dx

∣∣∣
≤1

2
‖ut(t)‖22 +

C2
∗

2a0
a(u(t), u(t)) +

1

2
‖vt(t)‖22 +

C2
∗

2a0
a(v(t), v(t))

(76)

and

|R1(t)| ≤ 1

2
‖ut(t)‖22 +

1

2

∫
Ω

(∫ ∞
0

g(s)ϑt(s)ds

)2

dx

≤ 1

2
‖ut(t)‖22 +

(1− l)C2
∗

2a0

(
g � ∇ϑt

)
(t).

(77)

Similarly, we have

|R2(t)| ≤ 1

2
‖vt(t)‖22 +

(1− l)C2
∗

2a0

(
g � ∇ϕt

)
(t). (78)

Combining (74), (76)-(78), we get

|L(t)−ME(t)|

≤ 1

2
(N1 +N2) ‖ut(t)‖22 +

N1C∗
2a0

a(u(t), u(t)) +
N2(1− `)C2

∗
2a0

(
g � ∇ϑt

)
(t)

+
1

2
(N1 +N2) ‖vt(t)‖22 +

N1C∗
2a0

a(v(t), v(t)) +
N2(1− `)C2

∗
2a0

(
g � ∇ϕt

)
(t)

≤ c
(

1

2

(
g � ∇ϑt

)
(t) +

1

2
‖ut(t)‖22 +

1

2
‖vt(t)‖22 +

`

2
a(u(t), u(t))

+
`

2
a(v(t), v(t)) +

1

2

(
g � ∇ϕt

)
(t)− κ

∫
Ω
F (u, v)dx

)
+ cκ

∫
Ω
F (u, v)dx.

(79)

Using (44) and (56), we obtain

|L(t)−ME(t)| ≤cE(t) + c [a(u(t), ut)) + a(v(t), v(t))]3p ≤ cE(t). (80)

Lemma 10. The Lyapunov functional L defined in (74) satisfies, for all t ≥ 0

L′(t) ≤−mE(t) + c
(
g � ∇ϑt

)
(t) + c

(
g � ∇ϕt

)
(t) (81)

where m is a positive constant.

Proof. Combining (27), (58), (66) and taking δ = l
cN2

, we have, for all t ≥ 0,

L′(t) ≤− `

2
[N1 − 2]

(
a(u(t), u(t)) + a(v(t), v(t))

)
−
[
N2(1− `)−N1 −

`

c

](
‖ut(t)‖22 + ‖vt(t)‖22

)
+

1

2

[
M − cN2

2

] ((
g′ � ∇ϕt

)
(t) +

(
g′ � ∇ϑt

)
(t)
)

+ c
((
g � ∇ϑt

)
(t) +

(
g � ∇ϕt

)
(t)
)
.

(82)
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At this point, we choose N1 > 0 so that

N1 − 2 > 4.

When N1 is fixed, we pick N2 > 0 so large that

N2(1− `)−N1 −
`

c
> 2.

Then we choose M large enough satisfying

M − cN2
2 > 0.

So, we have

L′(t) ≤− 2`
(
a(u(t), u(t)) + a(v(t), v(t))

)
− 2

(
‖ut(t)‖22 + ‖vt(t)‖22

)
+ c

((
g � ∇ϑt

)
(t) +

(
g � ∇ϕt

)
(t)
)
− κ

∫
Ω
F (u(t), v(t))dx

+ κ

∫
Ω
F (u(t), v(t))dx.

(83)

Therefore,

L′(t) ≤−mE(t)− `
(
a(u(t), u(t)) + a(v(t), v(t))

)
+ κ

∫
Ω
F (u(t), v(t))dx

+ c
((
g � ∇ϑt

)
(t) +

(
g � ∇ϕt

)
(t)
)
.

(84)

Using (43), (45) and (46), we get

−`
(
a(u(t), u(t)) + a(v(t), v(t))

)
+ κ

∫
Ω
F (u(t), v(t))dx

≤ κ(3E(0))3p−1C6p
∗

4p2`3p−1a3p
0

(
a(u(t), u(t)) + a(v(t), v(t))

)
− `a(u(t), u(t))

− `a(v(t), v(t))

≤ `

6
a(u(t), u(t)) +

`

6
a(v(t), v(t))− ` (a(u(t), u(t)) + a(v(t), v(t))) ≤ 0.

(85)

So,
L′(t) ≤−mE(t) + c

((
g � ∇ϑt

)
(t) +

(
g � ∇ϕt

)
(t)
)
. (86)

5 Stability result

Theorem 3. Let (43) hold and (u, v) be the solution of (20). Then, there exist two positive
constants q1 and q2 such that the energy of problem (20) satisfies

E(t) ≤ q1e
−q2

∫ t
0 ξ(s)ds, ∀t ≥ 0. (87)

Proof. By multiplying (86) by ξ, recalling (A2) and using (27), we arrive at

ξ(t)L′(t) ≤ −mξ(t)E(t) + cξ(t)
((
g � ∇ϑt

)
(t) +

(
g � ∇ϕt

)
(t)
)

≤ −mξ(t)E(t)− c
((
g′ � ∇ϑt

)
(t) +

(
g′ � ∇ϕt

)
(t)
)

≤ −mξ(t)E(t)− cE′(t).
(88)
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That is (
ξ(t)L′(t) + cE(t)

)′ − ξ′(t)L(t) ≤−mξ(t)E(t). (89)

Using the fact that ξ′(t) ≤ 0, ∀t ≥ 0 and letting

ξ(t)L′(t) + cE(t) = F (t) ∼ E(t) (90)

we obtain

F ′(t) ≤−mξ(t)E(t) ≤ −m2ξ(t)F (t). (91)

A simple integration of (91) over (0, t) leads to

F (t) ≤F (t0)e−m
∫ t
0 ξ(s)ds. (92)

The proof of Theorem 3 is thus completed.

6 Conclusion

This paper deals with coupled wave system with viscoelastic terms and new logarithmic non-
linearities. It is well known that f1 and f2 in (8) have a relation (see for example Said-Houari
et al. (2011); Han & Wang (2009); Mustafa (2012); Messaoudi & Al-Gharabli (2015)), which is
the existence of a positive function F (u, v) satisfying

f1(u, v) =
∂F

∂u
(u, v),

f2(u, v) =
∂F

∂v
(u, v),

F(u,v) ≥ 0.

(93)

But in our system f1(u, v) = ∂F
∂u (u, v) and f2(u, v) = ∂F

∂v (u, v) where F : R2 −→ R is given by

F (u, v) =
1

4p2

(
κv2pu2p (2p ln (|uv|)− 1)

)
,

is not necessarily a positive function. Our goal in this work was to eliminate the condition of
positivity of the function F (u, v) and give a new result concerning the existence and stability of
the solution of nonlinear viscoelastic wave systems.
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Górka, P. (2009). Logarithmic Klein-Gordon equation. Acta Phys. Pol. B, 40 (1), 59–66.

Guesmia, A. (2011). Asymptotic stability of abstract dissipative systems with infinite memory.
J. Math. Anal. Appl., 382 (2), 748–760.

Han, X. (2013). Global existence of weak solutions for a logarithmic wave equation arising from
q-ball dynamics. Bull. Korean Math. Soc., 50 (1), 275–283.

Han, X., Wang, M. (2009). Global existence and blow-up of solutions for a system of nonlinear
viscoelastic wave equations with damping and source. Nonlinear Anal., 71 (11), 5427–5450.

Hiramatsu, T., Kawasaki, M., & Takahashi, F. (2010). Numerical study of q-ball formation in
gravity mediation. J. Cosmol. Astropart. Phys., 2010 (6), 008.

Hu, Q., Zhang, H., & Liu, G. (2019). Asymptotic behavior for a class of logarithmic wave
equations with linear damping. Appl. Math. Optim., 79 (1), 131–144.

Irkıl, N., Piskin, E. (2021). On decay and blow-up for a system of viscoelastic wave equations
with logarithmic nonlinearity. Advanced Studies: Euro-Tbilisi Mathematical Journal, 10, 65–
82.
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